	=
日	求

第一章	总体简介 3
1.1	仪器的组成3
1.2	按键说明3
1.3	仪器注意事项4
1.4	充电说明5
第二章	电阻率检测功能简介 6
2.1	简介6
2.2	工作原理6
2.3	主要功能及特点7
2.4	技术指标8
第三章	电阻率检测功能操作说明 9
3.1	功能界面9
3.2	测试界面9
3.4	电阻率检测12
3.5	数据管理12
3.6	系统设置15
3.7	关机17
第四章	机外软件操作说明 18
4.1	混凝土电阻率机外软件总体界面18
	1

附录:	混凝土电阻率与钢筋锈蚀状态判别	29
4.6	图示区	
4.5	数据区25	
4.4	控制面板 23	
4.3	工具栏 20	
4.2	菜单栏19	

第一章 总体简介

1.1 仪器的组成

图 1-1 仪器的组成

如图 1-1 所示, 仪器主要由主机、探头、信号线、充电传输线、 电阻率检测探头等组成。

1.2 按键说明

SZ-R62S 混凝土电阻率检测仪

按键标识	功能说明
Э	开关机键,长按打开或关闭仪器
>	确认键,对当前选择的参数或菜单项进行确认
ŋ	返回键,返回上次菜单
A, V	上、下按键修改参数或者移动光标。
) V	左、 右按键移动光标
₫	保存键,保存设置
¢	切换键,切换选中模块

1.3 仪器注意事项

使用本仪器前请仔细阅读本说明书。

工作环境要求:环境温度为:0℃~40℃;相对湿度:<90%RH;

电磁干扰:无强交变磁场且不得长时间在阳光下直射,在 潮湿、灰尘腐蚀性气体环境中使用时应采取必要的防护措施。

存储环境要求:环境温度:-20℃~60℃;

相对湿度: <90%RH 在通风、阴凉、干燥环境下保存,不得 长时间阳光直射,若长期不使用,应定期开机检查并进行充电 操作,本仪器不具备高等级防水功能。

在使用及携带搬运过程中应该避免剧烈震动及冲击。

注意: 主机和探头长时间不用, 电池会有轻微电量损耗现 象, 导致电量减少, 使用之前要进行再充电, 充电过程中电源 适配器会发热, 属正常现象, 并应保持充电环境通风良好, 便 于散热, 应使用本机配套的充电器进行充电, 使用其他型号的 充电器有可能对仪器造成损坏。

未经允许请勿打开仪器机壳,否则后果自负。

1.4 充电说明

主机充电器 5V/2A, Micro USB 接口, 主机充电时红色指示灯 常亮, 充电完毕指示灯绿色常亮, 电池也可以直接卸下来用手机充 电器进行充电。主机功能选择界面右上角显示电量, 当电量低时请 及时充电, 发射探头电源指示灯正常工作状态显示绿色, 显示红色 时请充电。

注意: 锂电池需要定期维护,建议用户在仪器主机不使用期间, 超过2个月,就须对锂电池进行充电一次,否则仪器可能会因锂电 池过度放电从而不能正常开机,由此引起的锂电池损坏不在我公司 保修范围内。

第二章 电阻率检测功能简介

2.1 简介

混凝土中钢筋的腐蚀是一个电化学过程,它产生电流使金属离 解,电阻率越低,腐蚀电流流过混凝土就越容易,腐蚀的可能性就 越大,因此测量混凝土的电阻率可以有效评价其抗腐蚀能力和评估 现有钢筋的腐蚀程度。

2.2 工作原理

检测原理采用半电池方法(Half-cell 200/Q-see man intl) 可以无需破坏钢筋混凝土表面地进行定位腐蚀的钢筋。通过这种方 法,使用等高线绘图程序可以有效地定位锈蚀活动的区域。在连接 钢筋和电缆时,混凝土表面的一部分需要破坏。但是,SZ-R72S 混 凝土电阻率测试仪使用 Wenner 探头接触混凝土保护层,它可以很 容易地测量混凝土保护层的锈蚀状况。混凝土的电阻率在检测锈蚀 中扮演者及其重要的角色。当混凝土的电阻率低时,其发生锈蚀的 活动的可能性非常比高电阻率高。电阻率通过公式 R=V/I 及 ρ=2 παR进行计算,其中R为电阻,V为通过电极的测量电压,I为 流经电极之间的电流,ρ为电阻系数,α为电极间的距离。

$$R = V/I, \rho = 2\pi\alpha R$$

电阻率检测模块包含一排四个电极,通过使外面两个电极通过 电流,测量两个内部电极上产生的电压,电阻率检测模块可以评估 混凝土锈蚀情况并将电阻率(KΩ/cm)显示在主机上。

2.3 主要功能及特点

1. 大容量存储。主机配备 16G 存储卡,测试空间无忧;

2. USB 数据传输。可将存储数据通过 USB 连接线上传到计算机;

- 3. PC 机专业数据分析软件。数据处理及报告生成轻松完成;
- 4. 高精度彩色液晶屏显示。界面设计清晰优美、操作简洁;
- 可拆卸锂电池供电,充电口采 Type-C 接口。(市面常见充电 器均可给主机充电),现场用充电宝即可充电,方便现场使用;

 采用新一代主机外壳。体积小巧,外壳包胶设计,手感舒适, 硅胶按键防尘防水,适应恶劣测试环境的要求;

2.4 技术指标

- 1. 测量范围为: 0[~]2500 kΩcm;
- 2. 测量精度为: ±1 kΩcm;
- 3. 分辨率: 0.1kΩcm;
- 4. 数据存储容量 16G:存储空间无忧;
- 5. 彩色液晶显示屏:全彩色液晶屏,分辨率为854×480;
- 电池续航:内置大容量锂离子电池,主机连续工作约为30小时以上。

第三章 电阻率检测功能操作说明

3.1 功能界面

长按[●]键, 仪器开机启动进入功能选择界面(如图 3-1)。 在此界面, 按**▲**、**▶**键移动光标选中不同的功能模块, 按**↓**键 进入对应的功能模块。

	电阻率检测仪	
		<u>i</u>
电阻率测试	数据管理	系统设置

图 3-1 电阻率功能选择界面

3.2 测试界面

在图 3-1 界面选中电阻率测试,按✓键进入测试界面(如图 3-2)。

电阻率测试参数	0000	n	• •	X =	0000	cm	
编号: R0004	0000.		.2*cm	Y=	0000	cm	\rightarrow
X 测距: 20 cm	+					_	
Y 测距: 20 cm						2	>150 100 ~ 150
温度: 29.2 ℃							75 ~ 100
						Ē.	50 ~ 75
							10 ~ 50
							0 ~ 10
→, ←, ↑, ↓: 移动测试光	沫,保存: <mark>存储测点</mark> ,	返回:	退出测试状态到参数	殳置			

图 3-2 测试界面

构件编号自动生成,每次测完一个构件,退出测试状态后, 构件号自动+1。因此进入测试界面后,就可以进行测试了。

- 1. 己存储: 己存储数据个数;
- 2. 最大值:采集数据中的最大值;
- 3. 平均值:采集数据中的平均值;
- 4. R: 测试的电阻率值;
- 3.3 测试前准备工作
- 将海绵塞进探头传感器中:为获得准确的结果,应保持传感器 的海绵清洁。测试前后应使用盆(水容器)清洗海绵。将海绵 浸在水中,然后把水挤出,保证海绵湿润即可,然后将其塞进 探头的四个孔中。使用后,取出海绵用自来水清洗。应经常用

盆(水容器)清洗海绵。

- **仪器连接:**将传感器和主机通过电缆相互连接上,建议在连接 之前不要开主机,连接之后再开主机,否则可能会导致主机损 坏。
- 3. 混凝土表面:如果混凝土表面太干或太湿,可能会导致很大的 误差。当混凝土表面脏污时,也无法进行测量,可能导致很大 的误差。因此,尽可能保持混凝土表面条件良好。如果混凝土 表面涂有油漆,则无法测量电阻率。同样,如果混凝土表面涂 有水性涂料,测量也会不正确。在这些情况下,应该在混凝土 表面钻 2[~]3mm 的孔,在混凝土内部进行测量,以获得最佳的结 果
- 主机:电阻率检测模块非常耗电,因此在测量之前最好将仪器 充满电。在现场测量之前,打开仪器并检查仪器是否工作正常。 使用参考板检查测量结果是否正常。

注意:由于没有预定义混凝土表面测量的最小间隙,因此同一 点的测量意义不大。而如果测量间隙太大,有可能既检测不到当前 的锈蚀活动又可能产生错误的数据累积。因此,测量间隙应该与正 在检查的混凝土和最后使用的测量结果保持一致。一般现场测量间 隙为 50cm。如果锈蚀的可能性比较高,推荐更小的间隙。当在特定的地方测量时,最好保持传感器尽量远离钢筋。

3.4 电阻率检测

准备工作完成之后,就可以开始测试了,当把传感器放在测区上,测量的电阻率值在上方显示,电阻率值稳定后按 键,即完成测试;并在测试区域进行图形化显示,测量完成后,如继续测量下一测区,按 译 择退出测试。

3.5 数据管理

在图 3-1 界面选择数据管理,进入数据管理模块(如图 3-3)。

🕝 数据管理	
	数据查看 数据传输 数据删除

图 3-3 数据管理

在数据管理包含:数据查看、数据传输、数据删除三个模块。 用▲、**▼**键可以选择模块。

3.5.1 数据查看

在数据管理界面选择数据查看,按✔键进入数据查看界面(如 图 3-4)。

R0009			数据列表	(KΩ*cm	1)	
R0008			11.8			
R0007	3.1	3.1	3.1	3.1	3.1	3.1
R0006						
R0005						
R0004						
R0003						
R0002						
R0001						
	数据个数:	6	最大	值: 3.1		平均值: 3.1

图 3-4 数据查看

在数据查看界面按▲键或▼键改变要查看的构件,在选中的 构件右侧显示构件的相关信息,日期、设计厚度、测点数、和合格 率以及测试的数据,按【,▶键可以数据翻页,♪键退出数据 查看界面,返回上一级菜单。 3.5.2 数据传输

数据传输功能是将测试的数据传输到 PC 机,可以进行数据进 一步分析,出报告等操作。把仪器主机和 PC 机用专用的数据线连 接后,在数据管理界面选择数据传输,按✓键进入数据传输界面 (如图 3-5)。

③ 数据传输		
	仪器进入传输模式!	

图 3-5 数据传输

仪器进入传输模式后,在电脑端出现一个主机的盘符,然后将 数据文件拷贝到电脑上,用专用的软件打开该数据文件,可进行数 据的后续分析。

3.5.3 数据清除

在数据管理界面选择数据删除,按✓键进入数据删除界面(如 图 3-6)。

) 数据删除	
	确定删除数据吗?
	确 定 取 消

图 3-6 数据传输

出现图 3-7 的询问框,用▲、▼、【、▲键可以在确定和

取消按钮之间切换,当在确定按钮时,此时按下**✓**键,数据将会 删除。

注意:所有数据删除后无法恢复,请确保数据保存到电脑中 并做好备份后,再删除数据,请慎用此项功能。

3.6 系统设置

在图 3-1 界面选择系统设置,进入系统设置模块(如图 3-7)。

N.M.KE			
	语言设置:	中文	
	液晶背光:	3	
	综合修正:	0	
	日期设置:	2022-04-08	
	时间设置:	13:54:23	扫描关注
	北京神州华	测科技有限责任公司版	权所有 V1.0
	电话: 010	-62373867	

图 3-7 系统设置

语言设置:语言可以设置为中文和英文

液晶背光:可以设置1,2,3,4种亮度。

综合修正:此功能适用于现场环境电磁干扰因素较多或存在其 他不明影响因素时,对仪器的测试结果进行综合修正。

日期设置: ←、→键移动光标, ↑、↓键修改数值。

时间设置: ◀、▶键移动光标,▲、▼键修改数值。

3.7 关机

注意:为了减少对屏幕的冲击,执行关机操作之后需间隔 30 秒 钟左右,仪器方可开机工作。

第四章 机外软件操作说明

4.1 混凝土电阻率机外软件总体界面

软件界面总共由6部分构成,分别为:标题栏,菜单栏,工具栏,控制面板,数据区,图示区构成。如图4-1所示。

图 4-1 软件总体界面

- ◇ 标题栏:打开数据文件的名称及软件名称。
- ◆ 菜单栏:实现软件操作的菜单。
- ◆ 工具栏:实现软件主要功能的按钮。
- ◆ 控制面板: 主要显示构件列表, 工程参数及分析参数。

- ◆ 数据区:显示测试数据。
- ◆ 图示区:把测试的数据以图示的形式予以显示。
- 4.2 菜单栏
- 4.2.1 文件菜单

文件菜单包含打开,保存,另存为,打印,打印设置,退出功能。上述功能基本与一般的 windows 软件功能基本相同。

- ◆ 打开:打开电阻率测试仪的测试数据,即*.DZL或者*.DEX 文件,具体参考 4.3.3 的相关内容。
- ◆ 保存:将分析处理完的数据予以保存,具体参考 4.3.3 的 相关内容。
- ◆ 另存为:将打开的电阻率数据文件保存成其他名称的数据 文件。
- ◆ 打印: 打印报告。
- ◆ 打印设置: 设置打印机的打印格式。
- ◆ 退出:关闭软件。

4.2.2 工具菜单

工具菜单包含数据传输、添加构件、删除构件、生成 word 报告、数据导入 Excel 四项功能,具体参考 6.3.3 的相关内容。

4.2.3 查看菜单

查看菜单包括显示或者隐藏控制面板、状态栏、工具栏。 4.2.4 关于

◆ 关于: 软件的版本信息。

◆ 计算器: 调用 windows 操作系统的计算器。

◆ 意见反馈:给我公司反馈对于仪器和软件的意见和建议。

◆ 访问我公司网站: 直接访问我公司网站。

4.3 工具栏

工具栏主要包含软件常用的一些功能,如图 4-2 所示:

图 4-2 工具条

4.3.1 打开

点击打开按钮,弹出文件打开对话框,如图 4-3 所示,用户可 以选择要打开的混凝土电阻率的数据文件(*.DEX)或者结果文件 (*.DZL)并打开。 SZ-R62S 混凝土电阻率检测仪

打开					? 🛛
查找范围(I):	🗀 RDATA		•	⊨ 🗈	r 📰 🕈
TISI. DEX					
文件名 00):	RISI. DEX			_ [打开の
文件类型 (T):	原始数据文件	(*. DEX)		-	111/1 (0)
	,				404113

图 4-3 打开文件对话框

4.3.2保存

在对数据文件进行分析处理后,如图 4-4 所示,可将所设置的参数及分析处理的结果保存到结果文件(*. DZL)中。

另存为			? 🗙
保存在 (I):	C RDATA 💌	+ 🗈	e* 💷 •
產 电阻率测读	松. DZL		
文件名 (M):	电阻率测试仪.DZL		保存(S)
保存类型(T):	电阻率测试仪数据文件(*.DZL)	•	取消

图 4-4 保存文件对话框

4.3.3 保存选择测区

将控制面板的构件列表中选中的构件单独保存成一个电阻 率测试仪数据文件。 4.3.4 控制面板

显示隐藏控制面板。

4.3.5 生成 word 报告

设置电阻率测试现场的工程参数,如图 4-5 所示。用户可以 选择根据自己的实际需求选择生成 word 报告的格式。

告参数					
WC	RD报告格式	检测排	吴告2	•	
报告编号	报告编号		工程名称	工程名称	
委托单位	委托单位		检测项目	检测项目	
检测方法	检测方法		检测日期	2008年12	月12-
建设单位	建设单位		施工单位	施工单位	
设计单位	设计单位		监理单位	监理单位	
监督单位	监督单位		工程地址	工程地质	
结构类别	结构类别		强度等级	C25	•
检测依据	检测依据		检测仪器	检测仪器	
检测人员	检测人员				
			确定	取消	

图 4-5 工程参数设置

4.3.6 数据导入 Excel 报表

将测试的数据导入 Excel, 方便用户进行后期的数据处理。

4.3.7 打印设置

用户可以设置是否打印页每页脚页码及其内容格式等。如图 4-6 所示。

打印设置 🛛 🔀						
☑ 打印页眉 ☑ 打印页脚 ☑ 打印页码						
页眉内容 神州华测检测技术有限责任公司						
页脚内容 神州华测检测技术有限责任公司						
页码格式 .1. ▼ 起始页码 5						
页码位置 底部居右 👻						
确 定 取 消						

图 4-6 打印参数设置

4.3.8打印

用于打印原始数据。

4.4 控制面板

控制面板主要包含构件列表、当前构件的测试参数及数据分析 结果、所有构件的分析结果三项内容。如图 4-7 所示。

图 4-7 控制面板

4.4.1 测区列表

测区列表中列举当前文件打开后所包含的所有构件的序号、测 区编号、测区所包含的测点数及构件的测试日期。在序号前面为☑, 该标记表示该构件被选中参与打印报告、生成 word 报告或者数据 导入 Excel。如果序号前面为□,则该构件的数据不参与分析处理 及生成报告等。

4.4.2 设置参数

显示当前测区的参数,主要参数如下:

测区编号:用户输入当前测区的编号。

测试类型:分为电位测试和梯度测试。

环境温度:输入测试现场的环境温度。

测试日期:用户可修改或输入测试日期。

测区描述:用于对测区的具体的信息进行准确的描述。

测点间距: 输入测试的 X 方向和 Y 方向的测距, 单位 cm

4.4.3 统计分析结果

显示每一个测区的统计分析结果。

4.5 数据区

数据区主要显示 X 方向坐标和 Y 方向坐标及其对应的测点的数据列表,用户可以对数据进行修正、增加或者删除测点等操作。如图 4-8 所示。

测点 (KΩ*cm)		X方向(单位:cm)										
		0	30	60	90	120	150	180	210	240	270	300
ү Л	0	31.7	31.7	31.6	31.7	31.7	31.7	31.6	31.7	31.7	31.7	
向 c	30	31.7	31.7	31.7	31.7	31.6	31.7	31.6	31.7	31.7	31.7	
m	60	31.7	31.7	31.7	31.7	31.7	31.7	31.7	31.7	31.7	2109.7	
	90	2109.7	21	2109.7	2109.7	2109.7	2109.7	2109.7	2109.7	2109.8	2109.7	
	120	2500.0	2109.7	2109.7	2109.7	2109.7	2109.7	2109.7	2109.7	2109.7	2109.7	
	150	299.5	299.5	299.5	299.5	299.5	299.5	299.5	299.5	299.5	299.5	
	180	0.0	299.5	299.5	299.5	299.5	299.5	299.5	299.5	299.5	299.5	

图 4-8 数据列表

用户如果想修正其中的某一个测点的测试数据,选中并双击 该点的数据,即可弹出图 4-9 对话框,用户输入测点的电位值或者 梯度值即可。

输入数据	×
X方向位置(cm)	30
Y方向位置(cm)	90
电阻率(KΩ*cm)	2109.7
确定	取消

图 4-9 输入测试数据对话框

4.6 图示区

图示区主要是将测试的数据以图形或者图像的形式予以显示, 让用户可以直观的观察并了解测试区域的锈蚀情况,图示区的显示 类型主要有三类,分别为图标显示区、谱图区和等值线区。如图 4-10 所示。

图 4-10 图示区

4.6.1 图标显示区

将电位或者梯度的值分成不同的区间并以不同的图标表示, 将测试得到的测点的电位值或梯度值根据其所在的区间以不同的 图标进行填充,锈蚀严重的地方,图标的颜色越深,这样用户可以 从图中直观的得出该区域锈蚀比较严重的结论。如图 4-11 所示。

图 4-11 图标显示区

4.6.2 谱图区

谱图区的绘图原理和图标显示区的绘图原理基本相同,将电 位或梯度值分为不同的区间,每一个区间对应于不同的颜色,根据 测点的电位值或梯度值其所在的区间用不同颜色进行填充,则得到 该测试区域的谱图。如图 4-12 所示。

图 4-12 谱图区

4

111 + 4 + •		
序号	混凝土电阻率(KΩ*cm)	钢筋锈蚀状态判别
1	>100	钢筋不会锈蚀
2	50 [~] 100	低锈蚀速率
3	$10^{\sim}50$	钢筋活化时,可出现中高锈蚀速率

电阻率不是锈蚀的控制因素

<10

附录: 混凝土电阻率与钢筋锈蚀状态判别