目录

1.1 简介 4
1.2 主要功能及特点 4
1.3 测厚技术指标 5
2.1 仪器组成 6
2.1.1 按键板说明 6
2.1.2 外接插口 7
2.2 充电说明 7
2.3 软件介绍及功能描述 8
2.3.1 开机及功能界面 8
2.3.2 厚度检测参数设置 8
2.3.3 厚度检测 9
2.3.4 数据查看 10
2.3.5 数据管理 11
2.3.6 系统设置 12
3.1 软件总体界面 14
3.2 菜单栏 15
3.2.1 文件菜单 15
3.2.2 工具菜单 15

	3.2.3 操作菜单	16
	3.2.4 查看菜单	16
	3.2.5 帮助菜单	16
3.	3工具栏	16
	3.3.1 打开	17
	3.3.2 保存	17
	3.3.3 保存选择构件	17
	3.3.4 控制面板	17
	3.3.5 数据传输	18
	3.3.6 工程参数设置	19
	3.3.7 生成 word 报告	20
	3.3.8 生成 excel 报告	20
	3.3.9 增加构件	20
	3.3.10 删除构件	20
	3.3.11 当前行上面插入数据	20
	3.3.12 当前行下面插入数据	20
	3.3.13 删除数据	20
	3.3.14 打印预览	20
	3.3.15 打印	20
	3.3.16 关于	21
3.	4 控制面板	21

3.4.1 构件列表	21
3.4.2 当前构件	22
3.4.3 所有构件	22
3.5 图示区	23

第一章概述

1.1 简介

SZ-H71S 楼板厚度测试仪,是一种便携式智能无损检测设 备用于测量现浇楼板、混凝土或墙、柱、梁、木材以及陶瓷等 其它非金属厚度。可通过主机界面的方向箭头指示准确定位发 射探头的位置,测量非金属板厚度。

1.2 主要功能及特点

1、实时定位功能,实时显示发射探头位置,通过方向指示快速定位发射探头位置,操作简便;

2、支持仪器标定,可有效解决温度等因素造成的厚度偏差;

3、具有存储、浏览、删除等功能,可存 10000 个构件;

4、USB 数据传输,可将存储数据通过 USB 连接线上传到 计算机;

5、PC 机专业数据分析软件,数据处理及报告生成轻松完成。;

6、3.5 寸高分辨率彩色液晶屏 (320x240 像素);

7、主机和发射探头分别内置大容量锂电池;

8、主机一体式设计,体积小巧,重量轻,方便携带;

1.3 测厚技术指标

方向指示范围:

X 方向 0.2[~]1.5m; Y 方向 0.2[~]1.2m;

不同厚度误差范围:

误差(mm) 量程 mm

 ± 1 20-350

- ± 2 351-600
- ± 3 601-900

工作环境要求:

环境温度: - 10℃~ 40℃

相对湿度: < 90%RH 不得长时间阳光直射

存储环境要求:

环境温度: - 20℃~ 40℃相对湿度: < 90%RH

避免进水

未经允许,请勿擅自打开仪器机壳

第二章操 作 说 明

2.1 仪器组成

整套仪器由以下三部分构成:

1、SZ-H71S 楼板厚度测试仪主机(图 2-1)。

2、SZ-H71S 楼板厚度测试仪发射探头(图 2-2)

3、充电电源、信号电缆、延长杆及其他辅件。

图 2-1 主 机 图 2-2 发 射 探 头

2.1.1 按键板说明

按键标识	功能说明
С С	开关机键,长按打开或关闭仪器
确认	确定键,对当前选择的参数或菜单项进行确认

返回	返回键,返回上次菜单
	向上键,向上移动光标;设置数字增大。
	向下键,向下移动光标;设置数字减小
保存	保存键,保存设置
切换	切换键,切换选中模块

2.1.2 外接插口

MicroUSB 插口 给仪器充电和传输数据

2.2 充电说明

主机充电器 5V/2A, Micro USB 接口。主机充电时红色指示 灯常亮,充电完毕指示灯绿色常亮。发射探头充电器 8.4V,充 电时充电器红灯常亮,充电完毕绿色指示灯常亮。主机功能选 择界面右上角显示主机电量,当电量低时请及时充电发射探头 电量低时按键四周显示橙色光圈就要及时充电了,平时显示绿 色光圈。

注意: 关机充电

2.3 软件介绍及功能描述

2.3.1 开机及功能界面

长按开关机键,可运行或关闭仪器,仪器启动后进入功能选择界面(图 2-3)

按上或下键切换各功能,按确认键进入。

图 2-3 总体界面

2.3.2 厚度检测参数设置

在图 2-3 界面按上键或下键选中厚度测试,按确认键进入 设计厚度参数设置界面如图 2-4

图 2-4 测试界面

按上键或下键更改设计厚度。如果不需要更改,按确认键 进入厚度测试界面图 2-5

图 2-5 参数设置

默认情况每次保存测试构件,构件编号会自动加1.

2.3.3 厚度检测

当发射探头在可探测范围时,屏幕会显示发射探头的方向, 用户根据显示的探头所在的方向,移动主机,当主机正好在发 射探头正上方时界面显示如图 2-6,并显示厚度,此时的厚度 即为该点楼板的厚度,这时按确认键保存这个测点,仪器会显 示已存测点数和合格率,依次测出所需要的所有测点,按保存 键保存所有测点,构件编号加 1.

图 2-6 测试界面

2.3.4 数据查看

在图 2-3 界面按上键或下键选中数据查看,按按确认键进入数据查看界面如图 2-7:

图 2-7 数据查看

在数据查看界面按上键或下键改变要查看的构件,在选中的 构件右侧显示构件的相关信息,日期、设计厚度、测点数、和 合格率。选中要查看的构件按确认键进入测点查看,上、下键 可以翻页,如图 2-8.

构件编	扁号:H00	01		
168	168	168	168	168
168	168	168	168	168
	第1	页 共	1页	

图 2-8 数据查看

2.3.5 数据管理

在图 2-3 界面按上键或下键选中数据管理,按按确定键进入数据管理界面如图 2-9 数据管理界面:

数据管	锂
数据传输	数据清除

图 2-9 数据管理

按切换键在数据传输和数据清除功能之间切换,在数据清除功能下按确认键,进行数据传输,主机和电脑连接 USB 线就 会在电脑端出现一个主机的盘符,然后将数据文件拷贝到电脑 上,用软件打开该数据文件,进行数据的分析等。在数据清除 功能上按确定键选择清除数据。 **注意**:数据清除将会清除所有的测试数据,用户在使用的时候一定要注意。

2.3.6 系统设置

在图 2-3 界面按上键或下键选中系统设置,按确认键进入 系统设置界面如图 2-10:

系统	设置
时间设置	修正设置

图 2-10 系统设置

按切换键在时间设置和修正设置功能之间切换,在时间设置功能下按确认键,进行数时间设置,如图 2-11

	时间设置	
年 2017 🛟 (月 09 🗘	日 07 🔶
b to	分 20	秒
16 🔽	36	59 🔽
2017/09/0)7 16:36	5:59 Thu

图 2-11 日期设置

按上、下键进行时间日期的更改,按切换键进行时间日期 的切换,按保存键保存设置。在修正界面按确定键选择修正设 置如图 2-12,按上、下键进行设置,按保存键保存设置

图 2-12 楼板厚度修正值

第三章机 外 数 据 分 析 软 件

3.1 软件总体界面

软件界面总共由6部分构成,分别为:标题栏,菜单栏, 工具栏,控制面板,数据区,图示区构成。如图3-1所示。

图 3-1 软件总体界面

标题栏:打开数据文件的名称及软件名称。

菜单栏:实现软件操作的菜单。

工具栏:实现软件主要功能的按钮。

控制面板: 主要显示构件列表, 工程参数及分析参数。

数据区:显示测试数据。

图示区:把测试的数据以图示的形式予以显示。

3.2 菜单栏

3.2.1 文件菜单

文件菜单包含打开,保存,另存为,打印,打印设置,退 出功能。上述功能基本与一般的 windows 软件功能基本相同。

打开:打开楼板仪的测试数据,即*.LBY 文件,具体参考 3.3 的相关内容。

保存:将分析处理完的数据予以保存,具体参考 3.3 的相关内容。

另存为:将打开的楼板数据文件保存成其他名称的数据文件。

打印:打印报告。

打印设置:设置打印机的打印格式。

退出:关闭软件。

3.2.2 工具菜单

工具菜单包含数据传输、工程参数设置、生成 word 报告、数据导入 Excel 四项功能,具体参考 3.3 的相关内容。

3.2.3 操作菜单

操作菜单可对构件的数据进行分析操作。具体包含插入构件、删除构件、插入一行数据、删除一行数据、删除数据五项操作,具体参考 3.3 的相关内容。

3.2.4 查看菜单

查看菜单包括显示或者隐藏控制面板、状态栏、工具栏。

3.2.5 帮助菜单

帮助菜单包含版本说明和联机帮助。

计算器:调用 windows 操作系统的计算器,用户可以进行 计算。

意见反馈:给我公司反馈对于仪器和软件的意见和建议。

访问我公司网站:直接访问我公司网站。

3.3 工具栏

工具栏主要包含软件常用的一些功能,如图 3-2 所示:

图 3-2 工具条

3.3.1 打开

点击打开按钮,弹出文件打开对话框,如图 3-3 所示,用 户可以选择要打开的楼板仪(*.LBY)文件并打开。

11 217			?
查找范围(L):	🔁 原始数据	- 🔁 🔿	
LBYDat			
文件名 (2):	LBYDat		Ŧ@

图 3-3 打开文件对话框

3.3.2 保存

在对数据文件进行分析处理后,可将所设置的参数及分析 处理的结果保存到原数据文件中。

3.3.3 保存选择构件

将控制面板(具体内容参考 3.4)的构件列表中选中的构件 单独保存成一个楼板仪数据文件。

3.3.4 控制面板

显示隐藏控制面板。

3.3.5 数据传输

将楼板仪中的测试数据文件传输到计算机中并保存成数据 文件,点击传输按钮,弹出图 3-4 所示数据传输对话框,数据 传输的步骤如下:

用串口线或 USB 传输线讲楼板仪和计算机连接起来。

点击存放目录选择数据保存的路径。

选择传输的端口类型,有两种端口类型:USB 口和 COM 口 (串口),分别对应于 USB 传输和串口传输。需要注意的是, 在 USB 传输前,需安装 USB 驱动,具体内容参考附件 1 中的 USB 驱动的安装。

选择端口并等待传输。若选择 USB 传输,用传输线把仪器 和计算机连接起来后,打开楼板仪,在计算机的硬件管理器中 会出现 USB1 或者 USB2 等设备名,用户在端口号选择对应的设 备名。若是串口,用户选择对应的串口号,选择了设备名或者 串口后,点击开始传输,软件进入传输等待状态。

数据传输。进入楼板仪的数据传并操作仪器使之进入传输 状态(参考仪器说明书的数据传输部分),则数据开始传输,数 据传输完成后,在状态栏中会显示数据传输结束,数据传输对 话框消失。在存放目录所指定的路径下,用户会发现一个 LBYDat.LBY 文件, 然后用户打开该数据文件后即可处理传输出 来的数据。

文件存储路径	C:\LBYD:	at.LBY	存放目录
端口类型	C USB	• com	开始传输
端口号	COM1	•	取消
传输状态			

3-4 数据传输对话框

3.3.6 工程参数设置

设置楼板厚度的测试现场的工程参数,如图 3-5 所示。用 户可以选择根据自己的实际需求选择生成 word 报告的格式。

WC	RD报告格式	则报告2	-
报告编号	报告编号	工程名称	工程名称
委托单位	委托单位	一 检测项目	检测项目
检测方法	检测方法	检测日期	2008年 5月 1 💌
建设单位	建设单位	施工单位	施工单位
设计单位	设计单位	监理单位	监理单位
监督单位	监督单位	二 工程地址	工程地质
结构类别	结构类别	强度等级	C25 💌
检测依据	检测依据	检测仪器	检测仪器
检测人员	检测人员		

图 3-5 工程参数设置

3.3.7 生成 word 报告

根据在工程参数中设置的 word 报告的格式生成 word 报告。

3.3.8 生成 excel 报告

此功能可将数据导入 Excel 表格中。

3.3.9 增加构件

增加一个构件的数据。

3.3.10 删除构件

删除用户在控制面板中的构件列表中选中的当前的构件。

3.3.11 当前行上面插入数据

在数据区选中的一行的上面插入一行测试数据。

3.3.12 当前行下面插入数据

在数据区选中的当前行的下面插入一行测试数据。

3.3.13 删除数据

删除数据区中选中的某一行数据。

3.3.14 打印预览

对打印的内容进行预览。

3.3.15 打印

打印软件根据数据的分析处理结果生成的报告。

3.3.16 关于

显示软件版本等信息。

3.4 控制面板

控制面板主要包含构件列表、当前构件的测试参数及数据 分析结果、所有构件的分析结果三项内容。如图 3-6 所示。

. . . .

			测试日期	测点数	1区编号	후号 测
		月28日	2009年03,	1	000	1 00
		月28日	2009年03,	14	000	2 10
		月28日	2009年03,	22	000	3 20
N		月28日	2009年03,	12	000	4 30
11-14-51		月28日	2009年03,	17	000	5 40
一個什列	-	月28日	2009年03,	22	000	6 50
		月28日	2009年03,	15	000	7 60
		月28日	2009年03,	28	000	8 70
		月28日	2009年03,	15	000	9 80
		月28日	2009年03,	11	000	10 90
		月28日	2009年03,	35	000	11 AC
		月28日	2009年03.	17	000	12 BC
— 当前核	•	-10	允许负偏差	. 5552	± 35	则试日期 允许正偏者
		1310	厚度載小1個		E 331	學度載大1
		0	平均厚度		12	数据个数
	6	91.7%	合格率		11	合格点数
						全部构件
	7%	数 91.7%	所有合格测点	%	数 91.7	所有测点个
man 11				9696	£7 91.7	转任合约录

图 3-6 控制面板

3.4.1 构件列表

构件列表中列举当前文件打开后所包含的所有构件的序号、 测区编号、构件所包含的测点数及构件的测试日期。在序号前 面为 ☑,该标记表示该构件被选中参与打印报告、生成 word 报告或者数据导入 Excel。如果序号前面为□,则该构件的数 据不参与分析处理及生成报告等。

3.4.2 当前构件

显示当前构件的参数及统计分析结果。其中构件名称、允许正偏差、允许负偏差、测试日期用户可修改或输入。其他的 均为统计分析结果,无需修改或输入。

允许正偏差:厚度设计值允许的偏差上限。输入应为正值。
允许正偏差:厚度设计值允许的偏差下限。输入应为负值。
3.4.3 所有构件

显示所有构件的统计分析结果。

数据区

数据区楼板厚度列表包含测点序号,测点号,楼板厚度值、 偏差、相对偏差及厚度是否合格六项,如图 3-7 所示。选中其 中一行后,用户可以在工具栏中点击上面插入一行按钮,则在 该行上面插入一行数据。同样可在选中行下面插入一行数据或 者删除该行数据。用户双击选中行的保护层厚度值,可以修正 该保护成厚度数据。保护层厚度是否合格中 ✓ 表示合格, × 表示不合格。

用户可以对厚度数据进行修正,在修正时,双击厚度测点

所在的单元格,输入数据即可。

序号	测点号	厚度值(mm)	偏差(mm)	相对偏差(mm)	是否合格
1	16	20	0	0	~
2	16	20	0	0	~
3	16	20	0	0	4
4	16	20	0	0	4
5	16	20	0	0	4
6	16	20	0	0	4
7	16	20	0	0	~
8	16	20	0	0	4
9	16	20	0	0	~
10	16	20	0	0	1
11	16	20	0	0	4
12	16	20	0	0	4
13	16	20	0	0	~
14	16	20	0	0	~

3-7 厚度测试数据列表

3.5 图示区

图示区将测试得到的数据以图示的形式予以显示,用户可 以直观的看到那些测点合格,那些测点不合格,如图 3-8 所示。 图中两条虚线表示厚度合格的上下限,在上下限之内的测点厚 度值为合格的测点,其颜色为绿色。在上下限之外的测点表示 厚度值不合格,其颜色为红色。紫色的测点表示当前测点。

图 3-8 厚度测试图示