目录

第一章	概述 1
1.1	简介1
1.2	主要功能及特点1
1.3	测厚技术指标2
1.4	仪器注意事项3
第二章	仪器组成及工作原理 5
2.1	仪器组成5
2.2	按键说明6
2.3	数据传输/充电口7
2.4	充电说明7
2.5	工作原理8
第三章	操作说明 9
3.1	开机及功能界面9
3.2	测试界面9
3.3	数据管理12
3.4	系统设置15
第四章	现场测试注意事项 18
第五章	机外数据分析软件 20
3.1 车	次件总体界面 20

3.2 🕏	表单栏	21
3.3 _	工具栏	22
3.4	控制面板	26
3.5	图示区	28

第一章 概述

1.1 简介

现浇楼板、墙体厚度等情况是评定建筑物安全性能的重要指标,受到国家和各级质检部门的重视,传统的检测方法为钻孔测量,属于破损检测,不但劳动强度大,而且测试精度低。SZ-H51T 无线楼板厚度测试仪,是一种便携式智能无损检测设备,用于测 量现浇楼板、混凝土墙、柱、梁、木材以及陶瓷等其它非金属构 件的厚度。可通过主机界面的方向箭头指示准确定位发射探头的 位置,并锁定中心,测量出非金属板的厚度,提高了测试效率。

1.2 主要功能及特点

- 接收探头和发射探头均采用无线设计。仪器配备2根支杆, 检测人员无需蹲下即可完成测试,也解决了采用信号线连接 易损坏,现场操作不便的不足:
- 实时定位功能。实时显示发射探头位置,通过方向指示快速 定位发射探头位置,操作简便;
- 3. 大容量存储。主机配备 16G 存储卡,测试空间无忧;
- 4. USB 数据传输。可将存储数据通过 USB 连接线上传到计算机;

1

SZ-H51T 无线楼板测厚仪

- 5. PC 机专业数据分析软件。数据处理及报告生成轻松完成;
- 6. **高精度彩色液晶屏显示**。界面设计清晰优美、操作简洁;
- 可拆卸锂电池供电,充电口采 Type-C 接口。(市面常见充电器均可给主机充电),现场用充电宝即可充电,方便现场使用;
- 采用新一代主机外壳。体积小巧,外壳包胶设计,手感舒适,硅胶按键防尘防水,适应恶劣测试环境的要求;
- 1.3 测厚技术指标
- 1. 方向指示范围: X 方向 0.2~1.5m; Y 方向 0.2~1.2m;
- 2. 厚度测试范围: 40mm-900mm;
- 3. 不同厚度误差范围:
 - 误差 (mm) 量程 mm
 - ± 1 40-600
 - ± 2 601-900
- 数据存储容量 16G:本机可存储 10000 个构件,存储空间无 忧;
- 5. 彩色液晶显示屏:全彩色液晶屏,分辨率为854×480;

 电池续航:内置大容量锂离子电池,主机连续工作约为30小时,发射探头连续工作约为25小时,接收探头连续工作约为 25小时。

1.4 仪器注意事项

- 1. 使用本仪器前请仔细阅读本说明书。
- 2. 工作环境要求:

环境温度为:0℃~40℃;

相对湿度: <90%RH;

电磁干扰:无强交变磁场且不得长时间在阳光下直射,在潮湿、灰尘腐蚀性气体环境中使用时应采取必要的防护措施。

3. 存储环境要求:

环境温度: -20℃~60℃;

相对湿度: <90%RH 在通风、阴凉、干燥环境下保存,不得长时间阳光直射,若长期不使用,应定期开机检查并进行充电操作,本仪器不具备高等级防水功能。

4. 在使用及携带搬运过程中应该避免剧烈震动及冲击。

- 注意:主机和探头长时间不用,电池会有轻微电量损耗现 象,导致电量减少,使用之前要进行再充电,充电过程中电 源适配器会发热,属正常现象,并应保持充电环境通风良 好,便于散热,应使用本机配套的充电器进行充电,使用其 他型号的充电器有可能对仪器造成损坏。
- 6. 未经允许请勿打开仪器机壳,否则后果自负。

第二章 仪器组成及工作原理

2.1 仪器组成

仪器是由主机、发射探头、接收探头、延长杆、对讲机、充电器等几部分组成,如图 2-1、2-2、2-3、2-4、2-5 所示。

图 2-1 主机正面

图 2-2 接收探头

图 2-3 发射探头

图 2-4 延长杆

图 2-5 对讲机

2.2 按键说明

SZ-H51T 无线楼板测厚仪

按键标识	功能说明
С	开关机键,长按打开或关闭仪器
\checkmark	确认键,对当前选择的参数或菜单项进行确认
U	返回键,返回上次菜单
	上、下按键修改参数或者移动光标。
	左 、 右 按键移动光标
d −	保存键,保存设置
¢	切换键,切换选中模块

2.3 数据传输/充电口

Micro USB 插口:给仪器充电和传输数据。

2.4 充电说明

主机: 主机充电器 5V/2A, Micro USB 接口, 主机充电时红色 指示灯常亮, 充电完毕指示灯绿色常亮, 电池也可以直接卸下来 用手机充电器进行充电。主机功能选择界面右上角显示电量, 当 电量低时请及时充电,发射探头电源指示灯正常工作状态显示绿 色,显示红色时请充电。 发射探头、接收探头: 充电器 8.4V/500mA, 充电时充电器红 灯常亮, 充电完毕绿色指示灯常亮, 红色需要充电。需要注意的 是,发射、接收探头均应在关机状态下充电。

注意:发射探头和接收探头充电器充电电压应为 8.4V,否则 在充电的时候有可能引起探头内部电池爆燃,由此引起的一切事 故我公司概不负责;

2.5 工作原理

H51T 楼板仪是利用电磁波幅值衰减规律的原理来测量楼板的 厚度,发射探头在非金属板一侧产生一定频率的电磁信号,接收 探头在楼板另一侧接收电磁信号并将其转换为电信号传入接收信 号处理系统,由接收信号处理系统将测量结果显示和存储。测试 时接收探头根据主机液晶屏幕指示的方向缓慢移动,待找到发射 探头的中心位置后,仪器锁定最小有效厚度,即为非金属板的真 实厚度。

第三章 操作说明

3.1 开机及功能界面

长按[●]机键,可运行或关闭仪器,仪器启动后进入功能选择 界面(图 3-1),按[▲]、▼、【、】切换各功能模块,按[↓] 键进入。

2022-03-10 08:30:15	楼板厚度测试仪	100%
厚度测试	夏の	系統设置
厚度测试	数据管理	系统设置

图 3-1 总体界面

3.2 测试界面

在图 3-1 界面选中厚度测试,按✓键进入测试界面(如图 3-2)。

图 3-2 测试界面

测试流程如下:

图 3-3 测试流程图

- 3.2.1 参数设置
- 构件编号:构件编号自动生成,每次测完一个构件,退出测 试状态后,构件号自动+1。
- 设计厚度:进入测试界面后,光标停留在设计厚度的位置,

按【、▶键移动光标,按▲、▼键更改设计厚度,修改完 成后按▼键进入测试,如果不需要更改,则直接按▼键进 入测试。

3.2.2 厚度检测

设置完参数,按♥♥键进入测试,开始测试时,发射探头固定 位置,测试人员移动接收探头,当进入发射探头的探测范围时, 屏幕会显示箭头指示,用户根据显示的箭头方向,水平垂直移动 接收探头,当接收探头移动到发射探头正上方时,会出现四个箭 头,并在右下方结果处显示厚度,在锁定的状态下,慢慢的小范 围挪动接收探头,找到厚度的最小值,此时的厚度即为该点楼板 的厚度。

如果不想保存结果,按[✓]键取消测试结果,想保存结果时, 按[▲]键保存这个测点,同时已存测点数和合格率也会更新显示, 依次测出所需要的所有测点,按[▶]键保存所有测点,构件编号加 1,即可进行下一个构件的测试。

注意:

- 开始测试时,接收探头上的红色箭头标记面对测试人
 员,测试时,水平垂直移动接收探头,不可转动探头,
 确保方向指示的正确性。
- 当接收探头的移动过程中,当出现方向频繁切换的时候,要放慢移动的速度,此时已接近发射探头的正上方。
- 3.3 数据管理

在图 3-1 界面选择数据管理,进入数据管理模块(如图 3-4)。

数据管理	
	数据查看 数据传输
	数据删除

图 3-4 数据管理

在数据管理包含:数据查看、数据传输、数据删除三个模 块。用▲、**▼**键可以选择模块。

3.3.1 数据查看

在数据管理界面选择数据查看,按✔键进入数据查看界面(如图 3-5)。

1009 1008	演讯日: 设计值	期: 20 : 150	22-3-2 平	:3 均值:1	.50	数 西 西 格	个数: 率:10	10 0%
4007 4006 4005 4004 4003 4002 4001	149 150	150 150	150	150	150	150	150	150

图 3-5 数据查看

在数据查看界面按▲键或▼键改变要查看的构件,在选中 的构件右侧显示构件的相关信息,日期、设计厚度、测点数、和 合格率以及测试的数据,按【,▶键可以数据翻页,▶键退出 数据查看界面,返回上一级菜单。 3.3.2 数据传输

数据传输功能是将测试的数据传输到 PC 机,可以进行数据进 一步分析,出报告等操作。把仪器主机和 PC 机用专用的数据线连 接后,在数据管理界面选择数据传输,按✓键进入数据传输界面 (如图 3-6)。

③ 数据传输		
	仪器进入传输模式!	

图 3-6 数据传输

仪器进入传输模式后,在电脑端出现一个主机的盘符,然后 将数据文件拷贝到电脑上,用专用的软件打开该数据文件,可进 行数据的后续分析。

3.3.3 数据清除

在数据管理界面选择数据删除,按✓键进入数据删除界面(如图 3-7)。

🕒 数据删除			
	确定删除数 确定	牧据吗? 取消]
l			

图 3-7 数据传输

出现图 3-7 的询问框,用▲、▼、【、▲键可以在确定和 取消按钮之间切换,当在确定按钮时,此时按下▼键,数据将会 删除。

注意:数据清除将会清除所有的测试数据,用户在使用的时候一定要注意。

3.4 系统设置

在图 3-1 界面选择系统设置,进入系统设置模块(如图 3-8)。

语言设置:	中文	
液晶背光:	3	
综合修正:	0	
日期设置:	2022-04-08	
时间设置:	13:54:23	扫描关注
北京神州华	测科技有限责任公司版	权所有 V1.0
电话: 010	-62373867	

图 3-8 系统设置

语言设置:语言可以设置为中文和英文

液晶背光:可以设置1,2,3,4种亮度。

综合修正:此功能适用于现场环境电磁干扰因素较多或存在其 他不明影响因素时,对仪器的测试结果进行综合修正。

日期设置: ←、→键移动光标, ↑、↓键修改数值。

时间设置: ◀、▶键移动光标,▲、▼键修改数值。

3.5 关机

长按り健即可实现关机操作。

注意:为了减少对屏幕的冲击,执行关机操作之后需间隔 30 秒 钟左右,仪器方可开机工作。

第四章 现场测试注意事项

- 4.1 使用前的准备工作:
 - 测量前要将主机、接收探头和发射探头电量充满,以 免影响后续测量;
 - 首先将仪器从机箱内取出,取出两节杆进行连接,连 接后将接收探头固定在延长杆上,按探头上开关打开 电源;
 - 根据现场情况,将剩余的4或者5个杆进行连接,之 后将发射探头固定到延长杆上,按探头上开关打开电 源并放到非金属板下面;
 - 延长杆与探头联接牢固,以确保探头在使用过程中不 会从高空跌落,导致探头的损坏;
 - 5. 将两台对讲机的电源打开以备测量人员沟通使用。

4.2 测试注意事项:

1. 对讲机在使用的过程中要和探头保持至少 1m 的距离。

- 测试过程中,应该确保发射探头表面始终紧贴被测构件(楼板等)的测试面,否则测试值会产生误差。
- 测试点的选取应该尽量避开钢筋等大体积金属物体, 保证测量结果的准确性。
- 发射探头固定后,接收探头开始测试时,接收探头上 的红色箭头标记面对测试人员,测试过程中,水平垂 直移动接收探头,不可转动探头,确保方向指示的正 确性。
- 当接收探头根据方向指示的移动过程中,出现方向频 繁切换的时候,要放慢移动的速度,此时已接近发射 探头的正上方。
- 当一起屏幕上出现四个箭头时,即为锁定状态,在锁 定的状态下,慢慢的挪动接收探头,找到厚度的最小 值,此时的厚度即为该点楼板的厚度。

第五章 机外数据分析软件

3.1 软件总体界面

软件界面总共由6部分构成,分别为:标题栏,菜单栏,工 具栏,控制面板,数据区,图示区构成。如图3-1所示。

图 3-1 软件总体界面

- 标题栏:打开数据文件的名称及软件名称。
- 菜单栏:实现软件操作的菜单。
- 工具栏:实现软件主要功能的按钮。

控制面板: 主要显示构件列表, 工程参数及分析参数。

数据区:显示测试数据。

图示区:把测试的数据以图示的形式予以显示。

3.2 菜单栏

3.2.1 文件菜单

文件菜单包含打开,保存,另存为,打印,打印设置,退出功 能。上述功能基本与一般的 windows 软件功能基本相同。

打开:打开楼板仪的测试数据,即*.LBY 文件,具体参考 3.3 的相关内容。

保存:将分析处理完的数据予以保存,具体参考 3.3 的相关内容。

另存为:将打开的楼板数据文件保存成其他名称的数据文件。 打印:打印报告。

打印设置:设置打印机的打印格式。

退出:关闭软件。

3.2.2 工具菜单

工具菜单包含数据传输、工程参数设置、生成 word 报告、数据导入 Excel 四项功能,具体参考 3.3 的相关内容。

3.2.3 操作菜单

操作菜单可对构件的数据进行分析操作。具体包含插入构件、删除构件、插入一行数据、删除一行数据、删除数据五项操作,具体参考 3.3 的相关内容。

3.2.4 查看菜单

查看菜单包括显示或者隐藏控制面板、状态栏、工具栏。

3.2.5 帮助菜单

帮助菜单包含版本说明和联机帮助。

计算器:调用 windows 操作系统的计算器,用户可以进行计算。

意见反馈:给我公司反馈对于仪器和软件的意见和建议。

访问我公司网站:直接访问我公司网站。

3.3 工具栏

工具栏主要包含软件常用的一些功能,如图 3-2 所示:

图 3-2 工具条

3.3.1 打开

点击打开按钮,弹出文件打开对话框,如图 3-3、图 3-4 所示,用户可以选择要打开的楼板仪原始数据文件(*.DEX)或者结果数据文件(*.RLBY)并打开。

\$	打开		×
查找范围(I):	👪 DATA	• E e	•
名称	<u>^</u>	修改日期	类型
REBAR.DEX	<	2014/7/2 0:00	DEX 文
<			>
文件名(N):	REBAR.DEX	FTF	₩(O)
文件类型(T):	原始数据文件 (*.DEX)	• Ę	NĂ /

图 3-3 打开原始数据文件

	打开	π	×
查找范围(I):	DATA	- ← 🗈 💣 🗉	•
名称	*	修改日期	类型
	LBY	2022/5/6 15:52	RLBY 🕏
<			>
文件名(N):	结果文件.RLBY	11	开(O)
文件类型(T):	分析结果文件 (*.RLBY)		取消

图 3-4 打开结果文件

3.3.2 保存

在对数据文件进行分析处理后,可将所设置的参数及分析处理的结果保存到结果数据文件*. RLBY 中。

3.3.3 保存选择构件

将控制面板(具体内容参考 3. 4)的构件列表中选中的构件单 独保存成一个楼板仪数据文件。

3.3.4 控制面板

显示隐藏控制面板。

3.3.5 工程参数设置

设置楼板厚度的测试现场的工程参数,如图 3-5 所示。用户可以选择根据自己的实际需求选择生成 word 报告的格式。

WO	RD报告格式	则报告2	•
报告编号	报告编号	工程名称	工程名称
委托单位	委托单位	一 检测项目	检测项目
检测方法	检测方法	检测日期	2008年 5月 1 💌
建设单位	建设单位	— 施工单位	施工单位
设计单位	设计单位		监理单位
监督单位	监督单位	一 工程地址	工程地质
结构类别	结构类别		C25 💌
检测依据	检测依据	检测仪器	检测仪器
检测人员	检测人员		

图 3-5 工程参数设置

3.3.6 生成 word 报告

根据在工程参数中设置的 word 报告的格式生成 word 报告。

3.3.7 生成 excel 报告

此功能可将数据导入 Excel 表格中。

3.3.8 增加构件

增加一个构件的数据。

3.3.9 删除构件

删除用户在控制面板中的构件列表中选中的当前的构件。

3.3.10 当前行上面插入数据

在数据区选中的一行的上面插入一行测试数据。

3.3.11 当前行下面插入数据

在数据区选中的当前行的下面插入一行测试数据。

3.3.12 删除数据

删除数据区中选中的某一行数据。

3.3.13 打印预览

对打印的内容进行预览。

3.3.14 打印

打印软件根据数据的分析处理结果生成的报告。

3.3.15 关于

显示软件版本等信息。

3.4 控制面板

控制面板主要包含构件列表、当前构件的测试参数及数据分析结果、所有构件的分析结果三项内容。如图 3-6 所示。

序号	测区编号	测点数	测试日期		
✓ 1	0000	1	2009年03,	月28日	
2	1000	14	2009年03,	月28日	
∀ 3	2000	22	2009年03,	月28日	
✓ 4	3000 12		2009年03月28日		
5	4000 17		2009年03月28日		45 14 71 =
6	5000	22	2009年03,	月28日	
7	6000	15	2009年03月28日		
28	7000	28	2009年03月28日		
9	8000	15	2009年03月28日		
10	9000	11	2009年03月28日		
11	A000	35	2009年03,	月28日	
12	B000	17	2009年03,	月28日	
测试日 允许正	期 2009 ³ 偏差 ³⁵	¥ 3月2 ▼	设计厚度 允许负偏差	301	
厚度量	大值 337		厚度最小值	318	
数据个	數 12		平均厚度	0	
合格点	数 11		合格率	91.7%	
全部构	件				
所有测点个数 91.7%		所有合格测点数 91.7%			
整体合格率 91.7%%					- CC +++ 14

图 3-6 控制面板

3.4.1 构件列表

构件列表中列举当前文件打开后所包含的所有构件的序号、 测区编号、构件所包含的测点数及构件的测试日期。在序号前面 为 ☑,该标记表示该构件被选中参与打印报告、生成 word 报告 或者数据导入 Exce1。如果序号前面为□,则该构件的数据不参与分析处理及生成报告等。

3.4.2 当前构件

显示当前构件的参数及统计分析结果。其中构件名称、允许 正偏差、允许负偏差、测试日期用户可修改或输入。其他的均为 统计分析结果,无需修改或输入。

允许正偏差:厚度设计值允许的偏差上限。输入应为正值。

允许正偏差:厚度设计值允许的偏差下限。输入应为负值。

3.4.3 所有构件

显示所有构件的统计分析结果。

数据区

数据区楼板厚度列表包含测点序号,测点号,楼板厚度值、 偏差、相对偏差及厚度是否合格六项,如图 3-7 所示。选中其中 一行后,用户可以在工具栏中点击上面插入一行按钮,则在该行 上面插入一行数据。同样可在选中行下面插入一行数据或者删除 该行数据。用户双击选中行的保护层厚度值,可以修正该保护成 厚度数据。保护层厚度是否合格中 ✓ 表示合格, × 表示不合 格。

用户可以对厚度数据进行修正,在修正时,双击厚度测点所

27

在的单元格,输入数据即可。

序号	测点号	厚度值 (mm)	偏差(nm)	相对偏差(mm)	是否合格
1	16	20	0	0	-/
2	16	20	0	0	4
3	16	20	0	0	4
4	16	20	0	0	4
5	16	20	0	0	4
6	16	20	0	0	4
7	16	20	0	0	4
8	16	20	0	0	1
9	16	20	0	0	4
10	16	20	0	0	4
11	16	20	0	0	4
12	16	20	0	0	4
13	16	20	0	0	1
14	16	20	0	0	4

3-7 厚度测试数据列表

3.5 图示区

图示区将测试得到的数据以图示的形式予以显示,用户可以 直观的看到那些测点合格,那些测点不合格,如图 3-8 所示。图 中两条虚线表示厚度合格的上下限,在上下限之内的测点厚度值 为合格的测点,其颜色为绿色。在上下限之外的测点表示厚度值 不合格,其颜色为红色。紫色点表示当前测点。

图 3-8 厚度测试图示